カスタムアルゴリズムと問題

カスタムアルゴリズムと問題

このノートブックでは、AlgorithmProblemを使用してカスタムアルゴリズムと問題を作成する方法を示します。ここでは、Sphere問題を解くPSOアルゴリズムの実装の例を示します。

import torch

from evox.core import Algorithm, Mutable, Parameter, Problem
from evox.utils import clamp
from evox.workflows import EvalMonitor, StdWorkflow

アルゴリズムの例:PSOアルゴリズム

粒子群最適化(PSO)は、鳥や魚の社会的行動に着想を得た集団ベースのメタヒューリスティックアルゴリズムです。連続および離散最適化問題の解決に広く使用されています。

以下はEvoXでのPSOアルゴリズムの実装例です:

def min_by(
    values,
    keys,
):
    """A helper function to find the minimum value in a list of values."""
    values = torch.cat(values, dim=0)
    keys = torch.cat(keys, dim=0)
    min_index = torch.argmin(keys)
    return values[min_index[None]][0], keys[min_index[None]][0]


class PSO(Algorithm):
    def __init__(
        self,
        pop_size: int,
        lb: torch.Tensor,
        ub: torch.Tensor,
        w: float = 0.6,
        phi_p: float = 2.5,
        phi_g: float = 0.8,
        device: torch.device | None = None,
    ):
        super().__init__()
        device = torch.get_default_device() if device is None else device
        assert lb.shape == ub.shape and lb.ndim == 1 and ub.ndim == 1 and lb.dtype == ub.dtype
        self.pop_size = pop_size
        self.dim = lb.shape[0]
        # Here, Parameter is used to indicate that these values are hyper-parameters
        # so that they can be correctly traced and vector-mapped
        self.w = Parameter(w, device=device)
        self.phi_p = Parameter(phi_p, device=device)
        self.phi_g = Parameter(phi_g, device=device)
        # setup
        lb = lb[None, :].to(device=device)
        ub = ub[None, :].to(device=device)
        length = ub - lb
        pop = torch.rand(self.pop_size, self.dim, device=device)
        pop = length * pop + lb
        velocity = torch.rand(self.pop_size, self.dim, device=device)
        velocity = 2 * length * velocity - length
        # write to self
        self.lb = lb
        self.ub = ub
        # mutable
        self.pop = Mutable(pop)
        self.velocity = Mutable(velocity)
        self.fit = Mutable(torch.full((self.pop_size,), torch.inf, device=device))
        self.local_best_location = Mutable(pop)
        self.local_best_fit = Mutable(torch.full((self.pop_size,), torch.inf, device=device))
        self.global_best_location = Mutable(pop[0])
        self.global_best_fit = Mutable(torch.tensor(torch.inf, device=device))

    def step(self):
        compare = self.local_best_fit > self.fit
        self.local_best_location = torch.where(compare[:, None], self.pop, self.local_best_location)
        self.local_best_fit = torch.where(compare, self.fit, self.local_best_fit)
        self.global_best_location, self.global_best_fit = min_by(
            [self.global_best_location.unsqueeze(0), self.pop],
            [self.global_best_fit.unsqueeze(0), self.fit],
        )
        rg = torch.rand(self.pop_size, self.dim, device=self.fit.device)
        rp = torch.rand(self.pop_size, self.dim, device=self.fit.device)
        velocity = (
            self.w * self.velocity
            + self.phi_p * rp * (self.local_best_location - self.pop)
            + self.phi_g * rg * (self.global_best_location - self.pop)
        )
        pop = self.pop + velocity
        self.pop = clamp(pop, self.lb, self.ub)
        self.velocity = clamp(velocity, self.lb, self.ub)
        self.fit = self.evaluate(self.pop)

    def init_step(self):
        """Perform the first step of the PSO optimization.

        See `step` for more details.
        """
        self.fit = self.evaluate(self.pop)
        self.local_best_fit = self.fit
        self.global_best_fit = torch.min(self.fit)

問題の例:Sphere問題

Sphere問題は、最適化アルゴリズムをテストするために使用される、シンプルでありながら基本的なベンチマーク最適化問題です。

Sphere関数は以下のように定義されます:

$$ \min f(x)= \sum_{i=1}^{n} x_{i}^{2} $$ 以下はEvoXでのSphere問題の実装例です:

class Sphere(Problem):
    def __init__(self):
        super().__init__()

    def evaluate(self, pop: torch.Tensor):
        return (pop**2).sum(-1)

アルゴリズムを使用して問題を解く

アルゴリズム、問題、モニターの初期化

algorithm = PSO(
    pop_size=100,
    lb=torch.tensor([-10.0]),
    ub=torch.tensor([10.0]),
    w=0.6,
    phi_p=2.5,
    phi_g=0.8,
)
problem = Sphere()
monitor = EvalMonitor()

ワークフローの初期化と実行

workflow = StdWorkflow(algorithm=algorithm, problem=problem, monitor=monitor)

for _ in range(100):
    workflow.step()
workflow.monitor.plot()